MAXIMAL ACCRETIVE SINGULAR QUASI-DIFFERENTIAL OPERATORS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Maximal Operators related to Families of Singular Integral Operators∗

In this paper, we shall study Lp−boundedness of two kinds of maximal operators related to some families of singular integrals. 2000 MSC: Primary 42B20, Secondary 42B25, 42B30

متن کامل

Φ-strongly Accretive Operators

Suppose that X is an arbitrary real Banach space and T : X → X is a Lipschitz continuous φ-strongly accretive operator or uniformly continuous φ-strongly accretive operator. We prove that under different conditions the three-step iteration methods with errors converge strongly to the solution of the equation Tx = f for a given f ∈ X.

متن کامل

Limiting Weak–type Behavior for Singular Integral and Maximal Operators

The following limit result holds for the weak–type (1,1) constant of dilation-commuting singular integral operator T in Rn: for f ∈ L1(Rn), f ≥ 0, lim λ→0 λ m{x ∈ R : |Tf(x)| > λ} = 1 n ∫ Sn−1 |Ω(x)|dσ(x)‖f‖1. For the maximal operator M , the corresponding result is lim λ→0 λ m{x ∈ R : |Mf(x)| > λ} = ‖f‖1.

متن کامل

Strong convergence of Halpern iterations for quasi-nonexpansive mappings and accretive operators in Banach spaces

In this paper, we first introduce a new Halpern-type iterative scheme to approximate common fixed points of an infinite family of quasi-nonexpansive mappings and obtain a strongly convergent iterative sequence to the common fixed points of these mappings in a uniformly convex Banach space. We then apply our method to approximate zeros of an infinite family of accretive operators and derive a st...

متن کامل

Maximal operator for pseudo-differential operators with homogeneous symbols

The aim of the present paper is to obtain a Sjölin-type maximal estimate for pseudo-differential operators with homogeneous symbols. The crux of the proof is to obtain a phase decomposition formula which does not involve the time traslation. The proof is somehow parallel to the paper by Pramanik and Terwilleger (P. Malabika and E. Terwilleger, A weak L2 estimate for a maximal dyadic sum operato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics

سال: 2017

ISSN: 1303-5010

DOI: 10.15672/hjms.2017.488